Skip to main content
Version: 1.5.0

Booleans and Conditionals

Booleans

The type of a boolean value is bool. Here is how to define a boolean value:

const a = true;
const b = false;

Common operations:

&&
Logical and
const logical_and = true && true;
||
Logical or
const logical_or = false || true;
!
Logical not
const logical_not = !false;
==
Equals
const eq = 2 == 3;
!=
Not equals
const not_eq = 2 != 3;
>
Greater than
const gt = 4 > 3;
<
Less than
const lt = 4 < 3;
>=
Greater than or equal to
const gte = 4 >= 3;
<=
Less than or equal to
const lte = 4 <= 3;

Comparing Values

In LIGO, only values of the same type can be compared. Moreover, not all values of the same type can be compared, only those with comparable types, which is a concept lifted from Michelson. Comparable types include, for instance, int, nat, bytes string, mav, timestamp, address, etc. As an example of non-comparable types: maps, sets or lists are not comparable: if you wish to compare them, you will have to write your own comparison function.

Note: when running in test mode (this is, in the testing framework), for developer convinence, more types are made comparable. Maps, sets and lists will be made comparable in case its elements are comparable.

Comparing Strings

const a = "Alice";
const b = "Alice";
const c = (a == b); // true

Comparing numbers

const a = 5;
const b = 4;
const c = (a == b);
const d = (a > b);
const e = (a < b);
const f = (a <= b);
const g = (a >= b);
const h = (a != b);

Comparing bytes

To check if the following operators have the expected result use ligo compile expression jsligo "a OP b"

Usage:

const a = 0x1001;
const b = 0x1000;
const c = (a == b);
const d = (a > b);
const e = (a < b);
const f = (a <= b);
const g = (a >= b);
const h = (a != b);

Comparing mav

💡 Comparing mav values is especially useful when dealing with an amount sent in a transaction.

const a: mav = 5mumav;
const b: mav = 10mumav;
const c = (a == b); // false

Conditionals

Conditional logic enables forking the control flow depending on the state.

type magnitude = ["Small"] | ["Large"]; // See variant types.
const compare = (n) => {
if (n < 10n) return Small() else return Large()
};

You can run the compare function defined above using the LIGO compiler like this:

ligo run evaluate-call gitlab-pages/docs/language-basics/src/boolean-if-else/cond.jsligo compare '21n'
# Outputs: Large

Switch Statement

JsLIGO also supports branching of control flow via the switch statement.

let quarter = n => {
let output = "";
switch (n) {
case 1:
case 2:
case 3:
output = "Q1";
break;
case 4:
case 5:
case 6:
output = "Q2";
break;
case 7:
case 8:
case 9:
output = "Q3";
break;
case 10:
case 11:
case 12:
output = "Q4";
break;
default:
output = "Invalid month."
};
return output;
}

The switch statement takes an expression and tries to find a case which matches the switch expression, If a matching case is found, the statements of the matching case are executed untill a break; statement. If no break is found the control falls through to the next case or default. If no matching case is found the statements of the default case are executed.

A few gotcha's about the switch statement

  1. A switch should have at-least one case or default.
  2. If a default case is provided, It should be the last case.
  3. Conditional break's are not supported i.e. break inside a if-then-else.
  4. In case of nested switch statements, the inner switch should not contain a return.

You can run the quarter function defined above using the LIGO compiler like this:

ligo run evaluate-call gitlab-pages/docs/language-basics/src/boolean-if-else/switch.jsligo quarter '5'
# Outputs: "Q2"

Ternary conditional expression

JsLIGO also supports JavaScript's ternary expression:

const ternary = a => a == 1 ? true : false;

which can also be nested:

const ternary_nested = a =>
a == 1 ? "one" :
a == 2 ? "two" :
a == 3 ? "three" :
"other"